Product Updates

Presented by: R. Michael Sullivan Operations Director

TELEDYNE TEST SERVICES

QUIKLOOK 3-FS

TOPICS

- Calibration Improvements Digital Channels
- QL3-FS Analog Accuracy Upgrade
- Displacement Sensor Accuracy Upgrade
- RoHS
- Spring Pack Measurement Device (SPMD), Sensitivity Polarity Change
- SPMD and Spring Pack Cal Stand Combined Accuracy

Calibration Improvements – Digital Cal Capability

В

- Channel 15 & 16 Digital Inputs
- Digital Capability added to CalQL software and QL3-FS Calibration Interface
- Interface now becomes M&TE
- 2 Year calibration Interval

+ CalQL Software

Calibration Improvements – Zero Offset Issue

- Customer Service Bulletin #2016-01
- Discovered zero offsets microvolt level
- Small impact on strain gage channels

➢ IF CHANNEL NOT ZEROED BY TESTER

- Issue related to noise generated during calibration – channels interconnected
- Solved with mod to Calibration Interface
- Investigation lead to discovery that we can greatly improve system stated accuracy

			Everywhereyoulook
			513 Mill Street Marion, MA 02738-1549 (508) 748-0103 Fax: (508) 748-2029
JSTOMER SER	VICE	BULLETIN	
B No. e ected Products	: 2016- : QL3/F : All QL All QL	01 S Calibration Interface – Of 3 Diagnostic Systems (Inclu 3 Calibration Interface Modu	fset Noise ding FS models) ıle (CIM)
ecific Models/s/n's	: 16020 : 16025	00, 160600 & 160600E (s/n 0 57 (s/n 16780 through 17581	QL3-0001 to 0108))
ue Description:			
Out of Tolerance (OO aused by a ground loo ing the calibration prod ding), as indicated on	T) condition p that can cess. The the CalQL	on was discovered on some QL a generate noise when the anal noise can cause a zero offset calibration report for readings ents).	3 diagnostic systems. The condition og channels are interconnected which leads to the OOT (>+/-1% at the low end of the very lowest
ge (1mV or 0.1mV/V n view of data from OOT	channels	confirms that the accuracy of	he affected units remains well with
ge (1mV or 0.1mV/V n view of data from OOT +/-1% of reading spec analysis. Given that t a is normally "zeroed", n +/-0.1% of reading. he field where the data have been zeroed ma	channels ification <i>h</i> the mV rai the actua Therefore is zeroed y require	confirms that the accuracy of i f the data from the channel is " nge on QL3 channels is used o l accuracy of channels with the e this is not an issue for actual 1. Machines that have been us additional action if a pre DP sta	he affected units remains well with teroed" per procedure during post- nly for strain gage devices where ti OOT condition is typically better QUIKLOOK-FS measurements tak de for DP testing where the data m thic test was not conducted.
ge (1mV or 0.1mV/V n view of data from OOT +/-1% of reading spec analysis. Given that 1 a is normally "zeroed", n +/-0.1% of reading. n e field where the data have been zeroed ma conciliation:	channels ification <i>I</i> i the mV rai the actua Therefore is zeroed y require	confirms that the accuracy of i f the data from the channel is " nge on QL3 channels is used of la accuracy of channels with the e this is not an issue for actual 1. Machines that have been us additional action if a pre DP sta	he affected units remains well with teroed" per procedure during post- nly for strain gage devices where ti OOT condition is typically better QUIKLOCK-FS measurements tak- ed for DP testing where the data m tric test was not conducted.
ge (1mV or 0.1mV/V n riew of data from OCT +1% of reading spec- analysis. Given that is normally "zeroed", +4.0.1% of reading. Take been zeroed have been zeroed to freading. to diffication is required will be performed by und" calibrations be pe- eduled calibrations required to Cl_3 itself. TTS will p- rige at the time of the i- stomer Action Requili to mere- e conducted with strai	channels ification <i>i</i> the mV rai the actual Thereform is zeroec y require : to all TTS TTS at no rformed o e. In some erform the next scheme red: is depend n gage de	confirms that the accuracy of 1 the data from the channel is 7 ge on QL3 channels is used o l accuracy of channels with the this is not an issue for actual 4. Machines that have been us additional action if a pre DP st additional action if a pre DP st charge. Following the modific charge. Following the modific all QL3 systems to re-set the the cases it may be necessary to re-set and any required groun duled calibration.	he affected units remains well with teroed" per procedure during post- nly for strain gage devices where II OOT condition is typically better QUIKLOOK-FS measurements tak do for DP testing where the data m tic test was not conducted. (p/n 160257) to eliminate the noise ation, we recommend that "As- internal zero offsets on their next operform grounding modifications I ding modifications at no additional units and whether or not any tests te channels was not zeroed.
ge (1mV or 0.1mV/V n riew of data from OCT +1% of reading spec- analysis. Given that is normally "zeroed", +1/0.1% of reading. The field where the data have been zeroed ma conciliation: nodification is required will be performed by und" calibrations be pe- eduled calibrations be pe- eduled calibrations be pe- eduled calibrations be pe- eduled calibrations be pe- duled calibrations be- reference be- conducted with strai	channels ification <i>i</i> the mV rat the actual the actual the actual the actual to all TTS therefore to all TTS at no rformed o e. In som erform the next schere red: is depend n gage de rmed By	confirms that the accuracy of 1 the data from the channel is 7 ge on QL3 channels is used o l accuracy of channels with the this is not an issue for actual 4. Machines that have been us additional action if a pre DP st additional action if a pre DP st charge. Following the modific charge. Following the modific all QL3 systems to re-sel the the cases it may be necessary to re-set and any required groun duled calibration.	he affected units remains well with teroed" per procedure during post- nly for strain gage devices where II OOT condition is typically better QUIKLOOK-FS measurements tak do for DP testing where the data m tic test was not conducted. (p/n 160257) to eliminate the noise ation, we recommend that "As- internal zero offsets on their next operform grounding modifications I ding modifications at no additional units and whether or not any tests te channels was not zeroed. Some Tests Not Zeroed
ge (1mV or 0.1mV/V n riew of data from OCT +1% of reading spec analysis. Given that is normally zeroed", h+/-0.1% of reading. he field where the data is normally zeroed ma conciliation: conditication is required will be performed by und" calibrations be pe dulled calibrations by QL3 itself. TTS will p rge at the time of the i stomer Action Requili stomer Action Requili tomer action required e conducted with strai Calibrations Perfor TTS	channels iffication <i>i</i> the mV rai the actual Therefore is zeroec y require : to all TTS TTS at no rformed o e. In som erform the next schered: is depend n gage de rmed By	confirms that the accuracy of 1 frhe data from the channel is " accuracy of channels with the ethis is not an issue for actual 1. Machines that have been us additional action if a pre DP sta 3. Calibration Interface Modules charge. Following the modific n all QL3 systems to re-set the e cases it may be necessary to re-set and any required groun duled calibration. dent on who calibrates the QL3 svices in which the data for thor All Zeroed Tests Send QL3 units to TTS on regular calibration cycle	he affected units remains well with teroed" per procedure during post- nly for strain gage devices where ti OOT condition is typically better QUIKLOOK-FS measurements tak df or DP testing where the data m tic test was not conducted. (p/n 160257) to eliminate the noise alion, we recommend that "As- internal zero offsets on their next ding modifications at no additional units and whether or not any tests te channels was not zeroed. Some Tests Not Zeroed Send QL3 to TTS ASAP

Calibration Improvements – Zero Offset Issue

TELEDYNE LECROY TEST SERVICES Everywhereyoulook

Calibration Improvements – Zero Offset Issue

TELEDYNE LECROY TEST SERVICES

Accuracy Improvements – Analog Channels

- Analog Channels 1-14 currently 1% of reading (0.25% FS <10% reading)
- CSB #2016-1 investigation lead to better understanding of system capability
- Proposed 0.25% Reading for 1V, 3V & 10V range
- Improvement under 10% range to 0.10% FS (mV ranges)
 0.025% FS (V ranges)
- Will apply to all existing QL3 & QL3-FS systems w/TLTS Recal

		Existing		Proposed		
			% of Range		% of Range	
Range	e (+/-)	0-10	10-100	0-10 10-100		
10mV 30mV 100mV 300mV	1mV/V 3mV/V 10mV/V 30mV/V	0.25% FS	1% Reading	0.10% FS	1% Reading	
1V 3V 10V				0.025% FS	0.25% Reading	

Accuracy Improvements – Analog Channels

Accuracy Improvements – Digital Channels

- Present stated uncertainty is +/-2 counts (8 quadrature counts)
- 1 count = 4 quadrature counts
- Improve spec to +/- 0.5 counts (2 quadrature counts)

Calibration Improvements – Displacement Calibration

- Developed new "Travel Cal" standard for displacement encoders.
- Up to 50" displacement, fully automatic operation
- 0.1" increments with microinch resolution
- Available for sale to our partners who perform inhouse calibration

Accuracy Improvements – Digital Encoder

- Original Analog Version 0.25% FS 0.075 in for 30 in version
- Initial Digital Version 0.12% FS 0.037 in for 30 in version
- Now 0.04% FS 0.012 in for 30 in Version

Digital Stem Position Encoder (SPE)

Features

- Ruggedized design
- Magnetic base for easy setup and attachment
- Adjustable orientation angle to allow proper alignment with stem travel
- 30 & 50 inch travel lengths standard
- Accuracy: ±0.04% Full Scale
- TEDS Sensor Recognition (QUIKLOOK 3-FS ONLY)

The Stem Position Encoder (SPE) provides the valve tester with a convenient means to accurately measure valve stem position. This custom "string pot" has a magnetic base and a variable orientation to allow the user to properly adapt to a variety of valve bodies and actuators including MSIVs, AOVs and MOVs. The SPE provides a calibrated signal for input to the QUIKLOOK Data Acquisition Systems.

The optional Rotary Shaft Adapter is a clamp-on split sheave used to provide a calibrated cable wrap diameter for conversion of rotary shaft motion to linear SPE cable motion. It includes the conversion factor for SPE output in degrees / volt.

Travel Distance

30 inch

50 inch

P/N

160564

160643

System

3-LCV-006-0047B - Mechanical Pro

QL3-FS

-	It is available for shaft diameters				
e	from 0.375 to 1.875 inches in				
	three ranges.				

The Stem Position Encoder is available with 30 and 50 inch travel length and connects directly to the QL3-FS System.

Accuracy Improvements – Digital Encoder

Accuracy Improvements – Digital Encoder

- New Spec for 0-2 inch displacement
 0.004 in/in
- Digital channel accuracy +/-0.5 counts, not 1% reading!
- 315.XX/counts per inch = .003 in/count
- 0.5 counts = 0.0008 channel error
- Total error <0.005 in/in (<2 inches)

Accuracy Improvements

Need to enhance current uncertainty statements for these products to add clarity

- Better explanation of measurement uncertainty
- Better error analysis of individual SP spring rate characterizations
- Need for more precise SP moment arm dimensioning
- Clearly separate actual moment arm dimensions and uncertainty/conservancy factors
- Revise QUIKLOOK FS and MIDAS/TEST accordingly

15

Better explanation of measurement uncertainty

- Presently state uncertainty of the SP Calibration Stand as 1.25% of reading
- Based on combined uncertainty of the;
 - Load Cell (0.5% Reading)
 - LVDT (0.5% Reading)
 - QL3-FS (1% Reading)
- Actually closer to 1.5% using conservative approach to the use of (2) QL3-FS channels.
- This only speaks to the calibration uncertainty of the system, not the accuracy of the SP as a measurement instrument.
- 5+% is a reasonable SP Spring Rate uncertainty

Better explanation of measurement uncertainty

- SPMD accuracy was 2% FS until we released the new version in 2013
- FS = 1 inch
- Typical SPMD measurement is 0.2 inches
- 2% FS becomes 10% reading
- Latest version of the SPMD (QL2 and QL3-FS) has 0.5% FS accuracy
- Same measurement >>> 2.5% of reading

Better error analysis of individual SP spring rate characterizations

- Presently QUIKLOOK FS Spring Pack Calibration software module "crushes" a spring pack 3 times and averages these runs
- Presents the user with an average 1st, 2nd or 3rd order polynomial curve to characterize the data points.
- We will soon provide the user with a error analysis of this best fit line against the actual data points

- Need for more precise SP
 moment arm dimensioning
- Moment arm data widely used in the industry is only an average for each SMB size...

				WG Pitch Radius or Moment	Average Moment	Error due to use of
	Unit Size	ze Worm Ratio		Arm (in)	Arm used	Average
		18.67	1	1.40		0.00%
	SMB-000	50	1	1.40	1.40	0.00%
		68	1	1.42		-1.41%
		19	1	1.81		2.76%
	SMB-00	45	1	1.88	1.86	-0.80%
		76	1	1.91		-2.36%
		15.67	1	2.35		-0.64%
	SMB_0	37	1	2.31	2 34	1.08%
	SIVID-0	58	1	2.30	2.34	1.52%
		95	1	2.38		-1.68%
		14.5	1	2.63	2.72	3.42%
	SMB-1	34	1	2.69		1.30%
		66	1	2.75		-1.09%
		90	1	2.81		-3.29%
		13.33	1	3.28		0.61%
	SMD 2	33.3	1	3.23	3 30	2.17%
	SIVIB-2	60	1	3.32	3.30	-0.45%
		85	1	3.38		-2.22%
	SMB-3	10.33	1	4.67		1.25%
		16	1	4.74	4.73	-0.21%
		41	1	4.69		0.75%
		57	1	4.75		-0.53%
		80	1	4.79		-1.25%
	SMB-4	12.67	1	6.12		-0.33%
		19	1	6.07		0.41%
		49	1	6.13	6.10	-0.49%
		58	1	6.01		1.43%
		86	1	6.17		-1.14%

Moment Arm Deviation from Average

- Clearly separate actual moment arm dimensions and uncertainty/conservancy factors
 - Presently QUIKLOOK FS Spring Pack Module and MIDAS contain the widely used industry moment arm data.
 - SP displacement X moment arm = actuator torque
 - These moment arm dimensions include a 10% increase to inject conservancy into the resultant
 - Teledyne will provide for user input of moment arm data and uncertainty.
 - User obtains moment arm data from Limitorque

- Revise QUIKLOOK FS and MIDAS/TEST accordingly
 - QUIKLOOK FS update for MUG/AUG
 - MIDAS/Test update as requested

