MIDAS UPDATE MIDAS Users Group

> Marion, MA August 20, 2015

> > Presented by: Mike Richard

MIDAS Agenda 1: MIDAS Owners Group

- Utility members who plan to participate in a formal MIDAS Owners Group (show of hands)
- Formation of a formal MIDAS Owners Group
 - Utility suggestions on logistics
 - Financial considerations
 - Scheduling considerations
 - Feasibility considerations
 - Goals
 - Products
 - Software
 - Documentation
 - Support
 - Training
 - Services
 - Implementation (initial phase)
 - MOV Calculation support (ongoing phase)

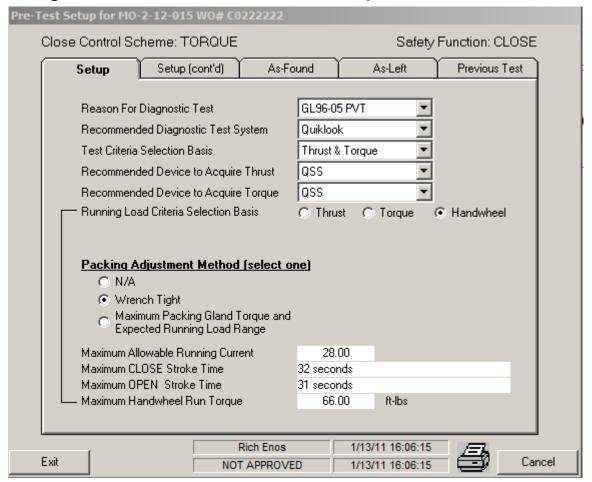
MIDAS Agenda 2: MIDAS Standardization

- Process standardization
 - Exelon versus FENOC
- Methods standardization
 - BWROG DCM
 - EPRI Butterfly
 - JOG Classification
- Margin standardization
 - Min Requirements
 - Max Limitations (contributing terms)
 - Error Combinations
 - Essential margins versus non-essential
- Terminology standardization
- Report(s) standardization
- Documentation standardization (V&V)
- Integration of new ASME requirements

MIDAS Agenda 3: MIDAS-TEST Standardization

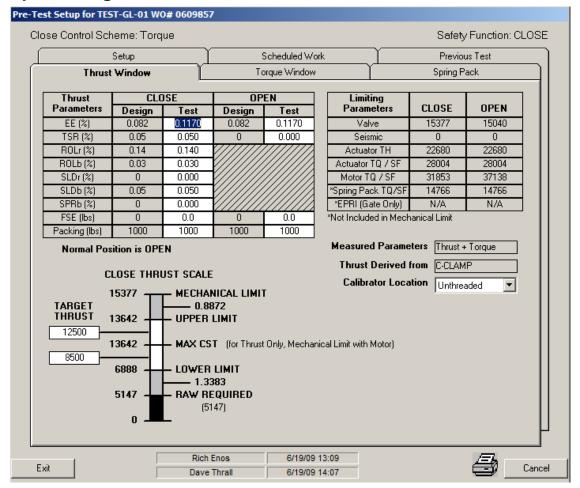
- Process standardization
 - Exelon versus FENOC
- Pre-Test Setup Window standardization
 - Short report versus long report
 - Content and terminology (proposed work)
- Post-Test Analysis standardization
 - Short report versus long report
 - Marker points used for calculations/trending
 - Criteria and terminology (work done)
- Trending standardization
 - Current As-Found to previous As-Left
 - Current As-Left to current As-Found
 - Others?
- Auxiliary features standardization
 - Rotor and Limit Switch settings
 - Lift/Lead settings
- Documentation standardization (V&V)

MIDAS Agenda 4: Miscellaneous Topics

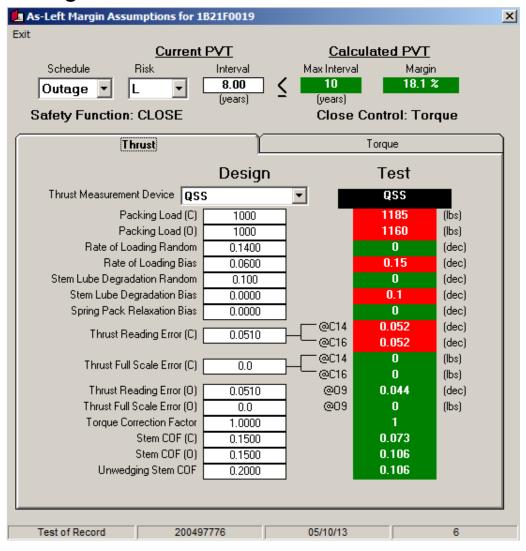


- MIDAS Margin Review using spreadsheets
 - Exelon versus FENOC
 - FENOC versus PGN (Duke)
 - FENOC versus SNC
- MIDAS Software Classification (Class 1?)
 - Review industry classification procedures
 - Prepare common response
 - Prepare common documentation
- MIDAS Technical Issues
 - BWROG DCM
 - FPRI PPM
 - STD Voltage Drop
- MIDAS Redirector
 - New Features

MIDAS Process: Exelon versus FENOC: Exelon


- Defines final setup windows in MIDAS
- MIDASTEST is used to implement setup window
- No changes are allowed to the setup window in MIDASTEST

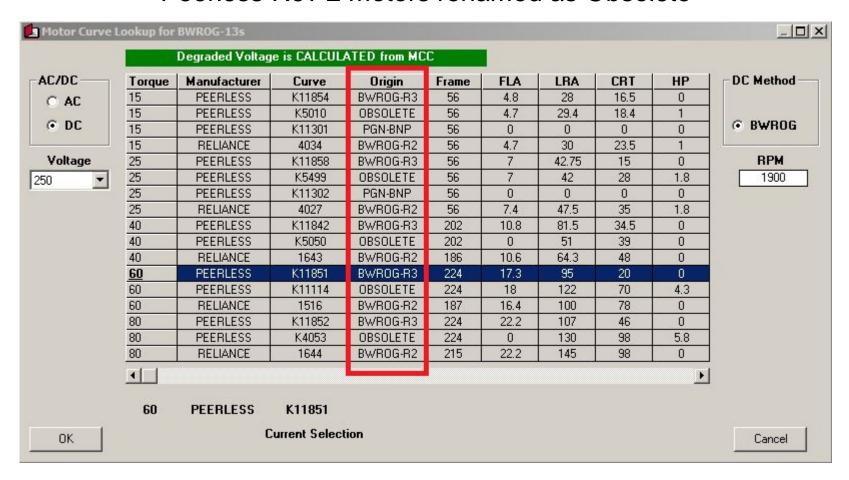
MIDAS Process: Exelon versus FENOC: FENOC


- Defines initial setup window in MIDAS.
- FETEST can be used to alter setup window.
- Any changes in FETEST must be resolved in MIDAS

MIDAS Process: Exelon versus FENOC: FENOC

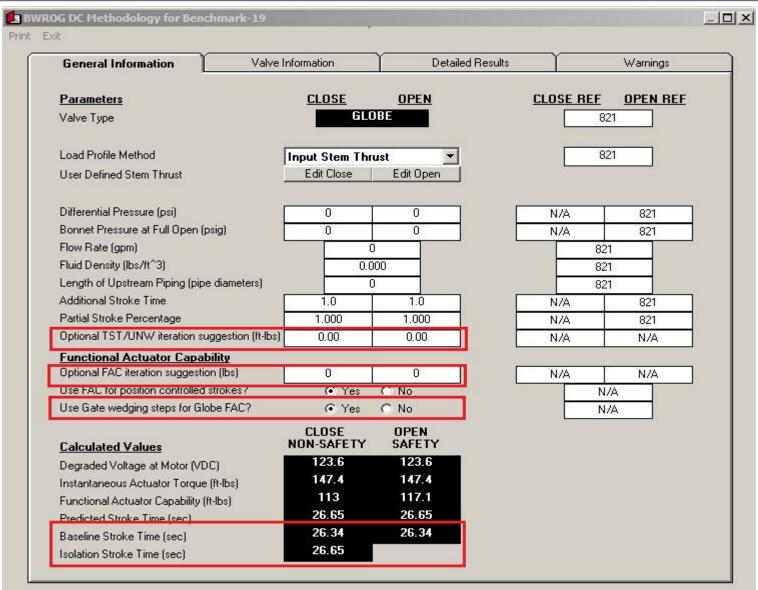
Any changes in FETEST must be resolved in MIDAS

MIDAS Technical Issues – BWROG DCM

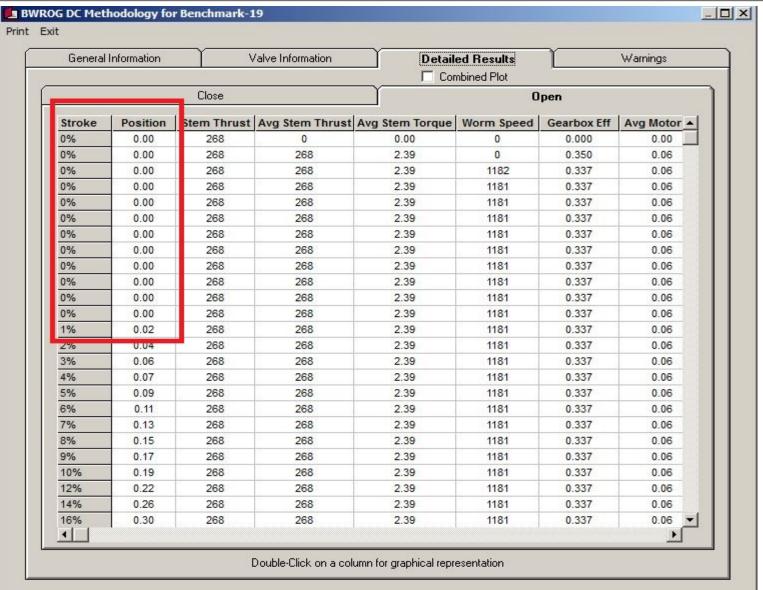


- New Peerless motor curves
 - Rev 3 curves added
 - Rev 2 curves retained but noted as obsolete
- New User Interface and associated report
- Comparison of MPR spreadsheet to MIDAS for V&V test cases leaves unanswered questions.
- Globe Valves use extra gate valve wedging steps, history and resolution. Is this resolved?
- TST and UNW Iteration problems
 - Optional TST/UNW iteration suggestion
- Functional Actuator Capability (FAC) Iteration
 - Rising stem with default profile
 - Rising stem with User Input Stem Thrust profile
 - Quarter turn with User Input Stem Torque profile
 - Optional FAC iteration suggestion
 - Scaling User Input Stem Thrust or Torque profiles

MIDAS BWROG DCM - New Motors



Peerless Rev 3 motors added to Peerless Rev 2 motors Peerless Rev 2 motors renamed as Obsolete


MIDAS BWROG DCM: New User Interface

MIDAS BWROG DCM: Globe valve additional steps

MIDAS BWROG DCM: TST/UNW Iteration Problems

Step 7 -- Calculate Maximum Allowable Thrust at Torque Switch Trip (Closing Strokes Only)

For closing strokes, calculate the maximum allowable thrust at torque switch trip, T_{TST-max}, as follows.

- 7.1. Determine the terminal voltage (V_T) and the available motor torque using the following iterative approach.
 - 7.1.1. Using the motor performance data in Table 2-3 for the appropriate motor, determine the motor current corresponding to the nominal motor torque, 9_{nom}. Use interpolation in Table 2-3, as needed. Initially set the motor current, I (amps), to this value.
 - 7.1.2. Calculate the motor voltage, V_T (volts), using the following equation.

Equation 2-22:
$$V_T = V_{mcc} - (I)(R_{cable} + R_{tol})$$

- Problem
 - Iteration started using nominal motor torque
 - Lookup motor current using nominal motor torque
 - Calculate motor voltage < 0. Iteration stops.
- Solution
 - Iteration started using nominal motor torque adjusted for degraded voltage. Repeat process.
 - Optional TST/UNW iteration suggestion

MIDAS BWROG DCM: FAC Definition

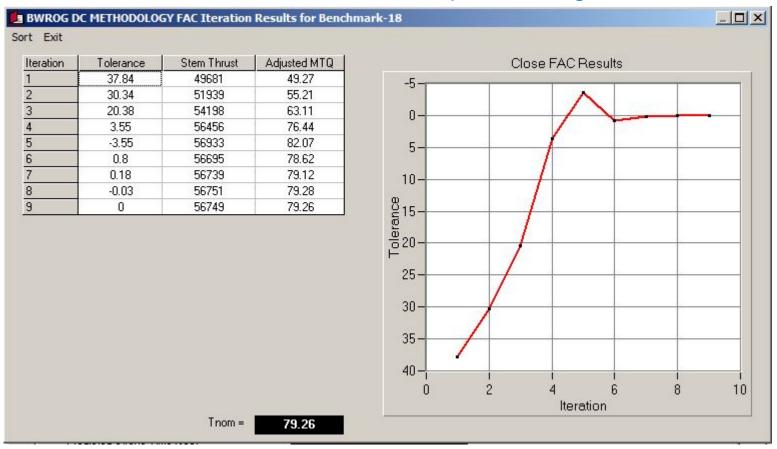
Step 6 -- Calculate Functional Actuator Capability and Margin

Calculate the functional actuator capability, ACfunc, and margin, Mfunc, as follows.

- 6.1. Set the required thrust, F_R, equal to 90% of the minimum instantaneous actuator capability for the stroke.
- 6.2. Repeat Steps 2.4, 2.5 and 3 to implement the DC motor performance method for this required thrust. Determine the maximum adjusted motor torque, 9', for the stroke.
- 6.3. If 9' is less than 9_{nom}, then increase F_R and repeat step 6.2. If 9' is more than 9_{nom}, then decrease F_R and repeat step 6.2.
- 6.4. Repeat step 6.3 until θ' equals θ_{nom}. The functional actuator capability (AC_{func}) is the value of F_R for which θ' equals θ_{nom}.

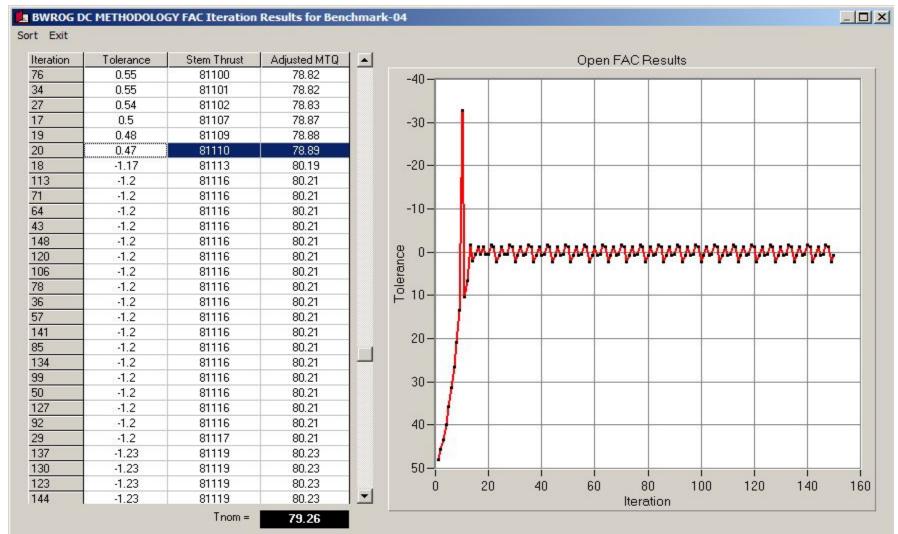
Problems

- Iteration sometimes diverges
- Iteration sometimes oscillates
- How to scale user input thrust/torque profiles

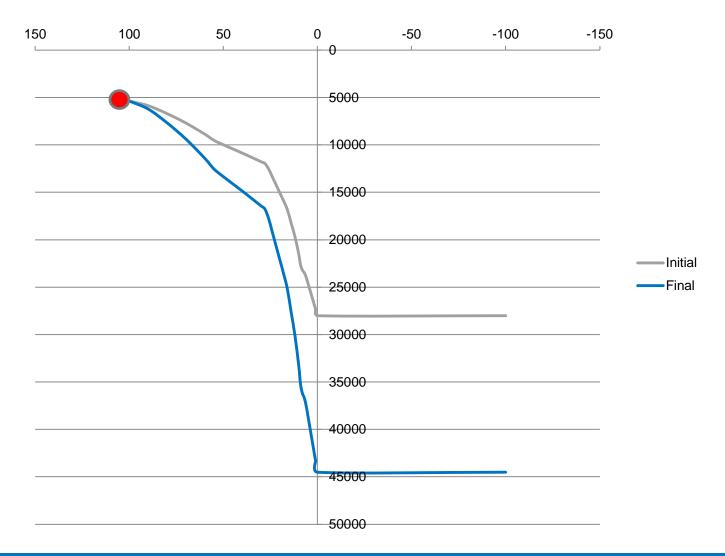

Solution

- Optional FAC iteration suggestion
- Provide graphical representation of iteration process
- Holding endpoints constant for profile scaling

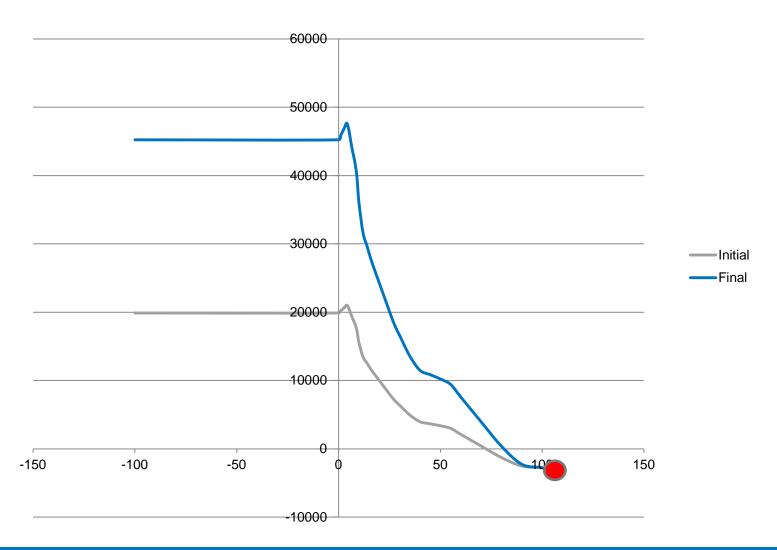
MIDAS BWROG DCM: New FAC Iteration form


FAC Iteration Case #1 – Simple convergence

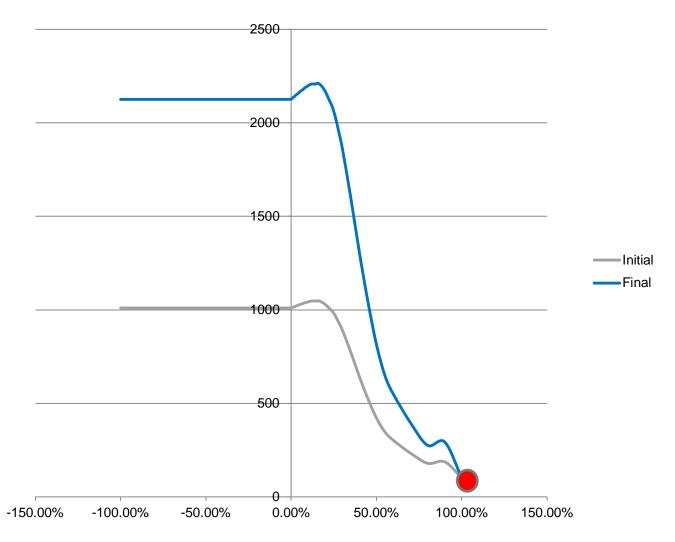
MIDAS BWROG DCM: New FAC Iteration form


FAC Iteration Case #2 – Oscillating convergence

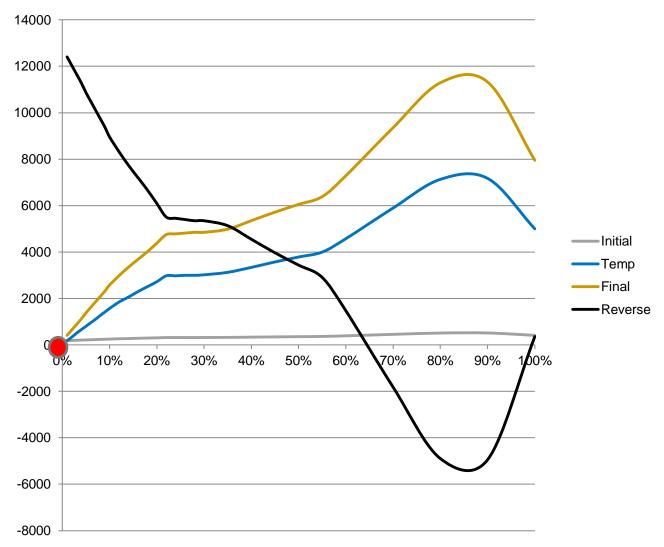
MIDAS BWROG DCM: FAC Iteration example Close


Test Case BWROG-08 Close Thrust Profile – Use Default

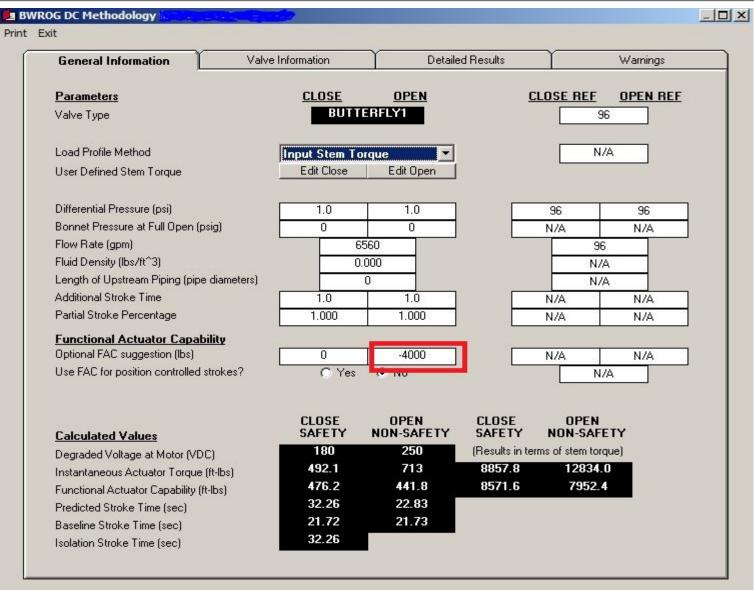
MIDAS BWROG DCM: FAC Iteration example Open


Test Case BWROG-08 Open Thrust Profile – Use Default

MIDAS BWROG DCM: FAC Iteration example Open


Test Case BWROG-21 Open Torque Profile – User Input

MIDAS BWROG DCM: FAC Iteration example Special


Plant Specific Open Torque Profile – User Input

20

MIDAS BWROG DCM: FAC Iteration example Special

MIDAS BWROG DCM: Revised report

BWR OG/DC METHODOLOGY RESULTS BWR OG-13s (V&V-1)

BWROG-13s V&V - Rev. 4

DC MOTOR OPERATED GL98-05 GLOBE VALVE PEERLESS 60 ft-lbs , Curve = K11851

General Information
Valve Type
Gate Valve Disc Type
Load profile method
Flow type
Fluid (blowdown only)
Valve and Actuator Information
Stem diameter at stem nut, Dxm (inches)
Stem diameter at packing, Dawn (inches)
Valve mean seat diameter, Dmm (inches)
Valve Seat ring inner diameter, Dr (inches) Globe valve stroke length, D (inches)
Globe valve flow coefficient, Cv (gpm/psi ^{1,2}) Packing load, F _{peck} (lbs)
Required thrust (including water inertia), Fa (Ib
Required thrust due to water inertia, Fwi (lbs)
Actuator overall ratio, OAR
Motor gear set ratio, MGSR
Actuator rated torque, need
Stem factor, SF (ft-lbs/lb)
Overhauling stem factor, SFo (ft-lbs/lb)
Votage at MCC, Vmcc (volts)
Cable resistance, Rose (ohms)
Thermal overload resistance, R∞ (ohms)
Nominal voltage, V _{mm} (volts)
Motor Type: PEERLESS, Curve = K11851
Valve stem lead, lead (inches)
Pullout efficiency, O₂
Run efficiency, O
Nominal motor speed (rpm), anon

Close	Open	References
GLOBE	GLOBE	[821]
N/A	N/A	[N/A]
Use Default	Use Default	[821]
N/A	N/A	[N/A]
N/A	N/A	[N/A] [N/A]
2.125	2.125	[821]
2.125	2.125	[821]
5.734	5.734	[821]
5.734	5.734	[821]
3.187	3.187	[821]
435	435	[821]
1922	1922	[N/A] [821]
1922	37508	Output
N/A	N/A	Output
76.99	76.99	[821]
0.429	0.429	Output
1800	1800	Output
0.014	0.014	[821] [N/A]
0.00084	0.00084	Output
210	210	[N/A] [821]
0.026	0.026	Output
0.1441	0.1441	Output
250	250	[7]
60 ft-lb, 250 VDC	60 ft-1b, 250 VDC	[3] [7]
0.5	0.5	[821]
0.4	0.4	Output
0.5	0.5	Output
1900	1900	[821]

MIDAS Methodology: EPRI Butterfly

- Methodology in MIDAS based on EPRI Report
 - TR-106563-V2, Revision 0, "Application Guide for Motor Operated Valves in Nuclear Power Plants (Revision of EPRI/NMAC NP-7501), Volume 2: Butterfly Valves, Final Report, October 1998
- EPRI Application Guide has been replaced by a new document which removed all equations, charts and supporting material in lieu of using EPRI PPM software
 - TR-1013463, Revision 2, "Nuclear Maintenance Applications Guide for Motor Operated Valves in Nuclear Power Plants, Volume 2: Butterfly Valves, Final Report, December 2006
- Comparison of MIDAS to EPRI PPM leaves unanswered questions. How to resolve this?

MIDAS Methodology: STD Voltage Drop

Problem: Discrepancies in definition of motor reactance Exelon model excludes temperature effects FENOC model includes temperature effects

(b) Motor Impedance (Zmotor)

$$Z_{motor} = \frac{V_{rated}}{\sqrt{3 \times LRA} \times \left(1 - CL\% \frac{(T_{amb} - T_{rate})}{155 \text{ °C}}\right)}$$

Where:

LRA = Rated Motor Locked Rotor Amps

V_{rated} = Rated Motor Voltage

Tamb = Maximum Motor Ambient Operating Temperature (°C)

T_{rate} = Motor Rated Operating Temperature (°C) CL% = % Current Loss from 25°C to 180°C

(c) Motor Resistance (Rmotor)

 $Rmotor = Zmotor \times Cos \phi$

Where:

Cosφ = Motor Power Factor (PF) @ LRA (See Table 4-4)

Motor Phase Angle @ LRA

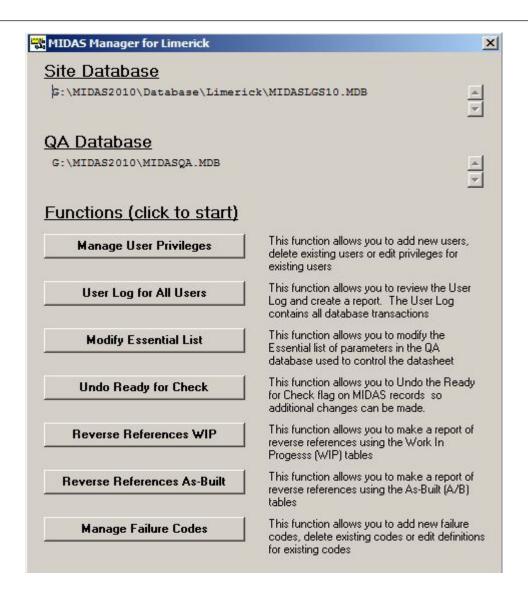
(d) Motor Reactance (Xmotor)

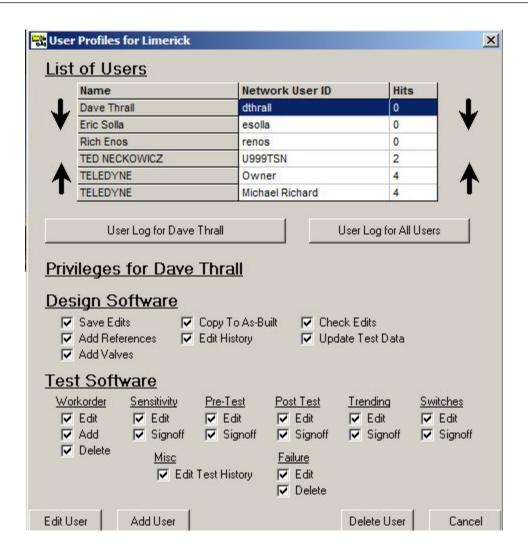
 $Xmotor = Zmotor \times Sin \phi$

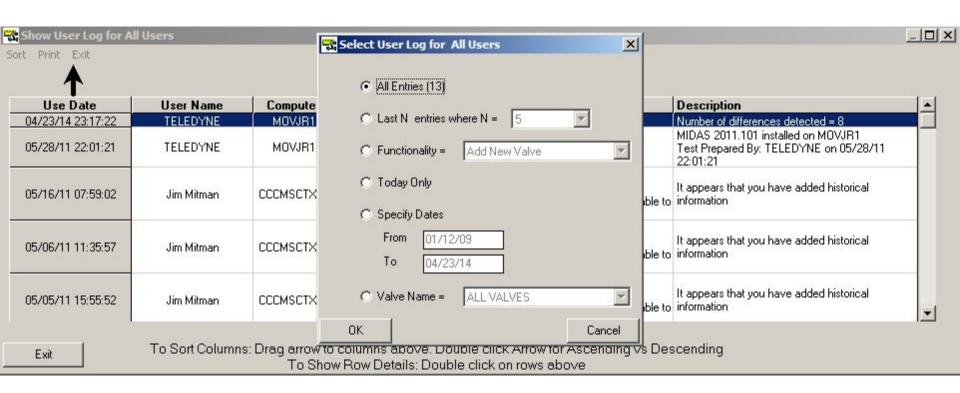
$$\sin \varphi = \sqrt{1 - \cos^2 \varphi}$$

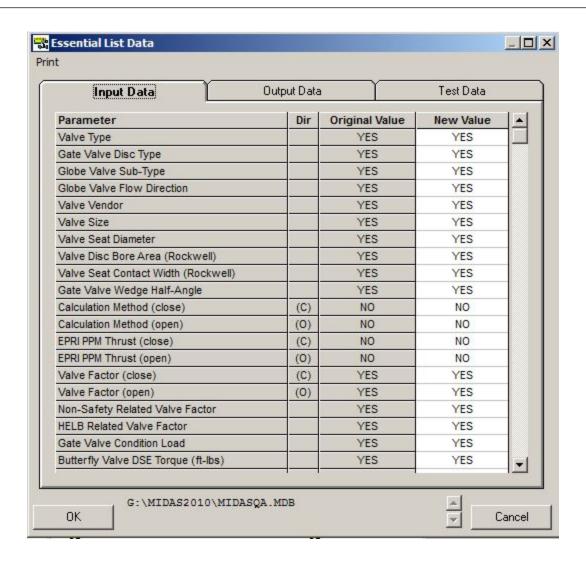
Where:

SIN₀ = Motor Reactive Power Factor @ LRA


MIDAS Redirector


MIDAS Redirector – Additional Features


MIDAS Redirector – Manage User Privileges


MIDAS Redirector – User Log for All Users

MIDAS Redirector – Modify Essential List

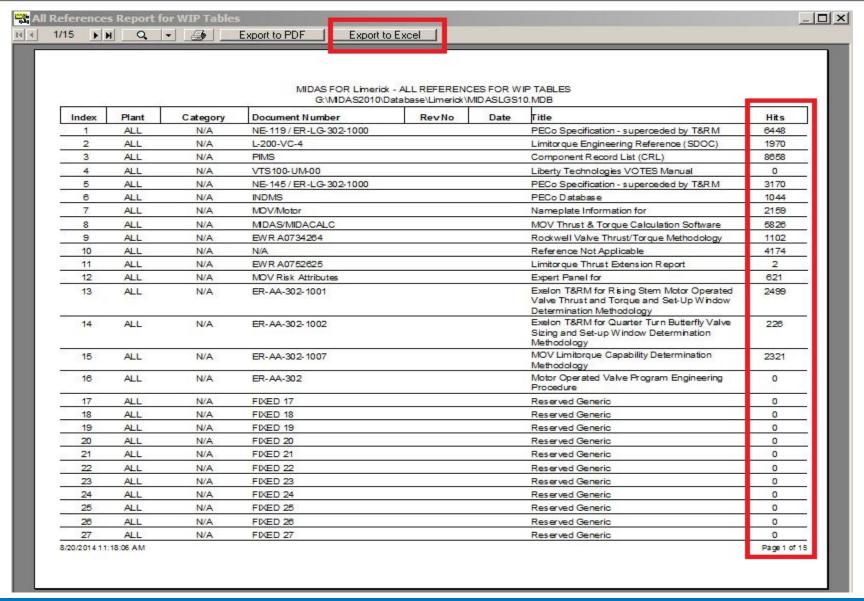
MIDAS Redirector – Undo Ready for Check

it	Double-Click on the desired row to RESET the Ready for Check status						
Valve	Rev	Mod Type	MDCR	Mod Reason	Prepared By	Prep Date	
HV-013-207	2	2	None	Thermal overload	Jim Mitman	04/23/11 19:17:32	
HV-013-211	2	2	None	Thermal overload	Jim Mitman	04/23/11 19:30:30	
HV-046-227	2	2	None	Thermal overloads	Jim Mitman	04/23/11 19:10:20	
HV-049-1F008	3	2	None	Valve factor, JOG eval	Jim Mitman	04/23/11 18:12:22	
HV-049-2F008	2	2	None	Revised JOG, VF to 1.4 closed	Jim Mitman	04/23/11 18:12:55	
HV-055-1F001	2	2	None	That error, spring pack, JOG	Jim Mitman	04/24/11 17:02:28	
HV-055-1F003	2	2	None	JOG evaluation, valve factor to 1.4 Cl	Jim Mitman	04/23/11 18:11:56	
HV-055-2F001	4	2	None	JOG, thrust error, open VF	Jim Mitman	04/24/11 16:59:01	
HV-055-2F002	2	2	None	Thermal overload	Jim Mitman	04/23/11 19:23:15	
HV-055-2F003	1	2	None	JOG eval, Close VF to 1.4	Jim Mitman	04/23/11 18:17:38	

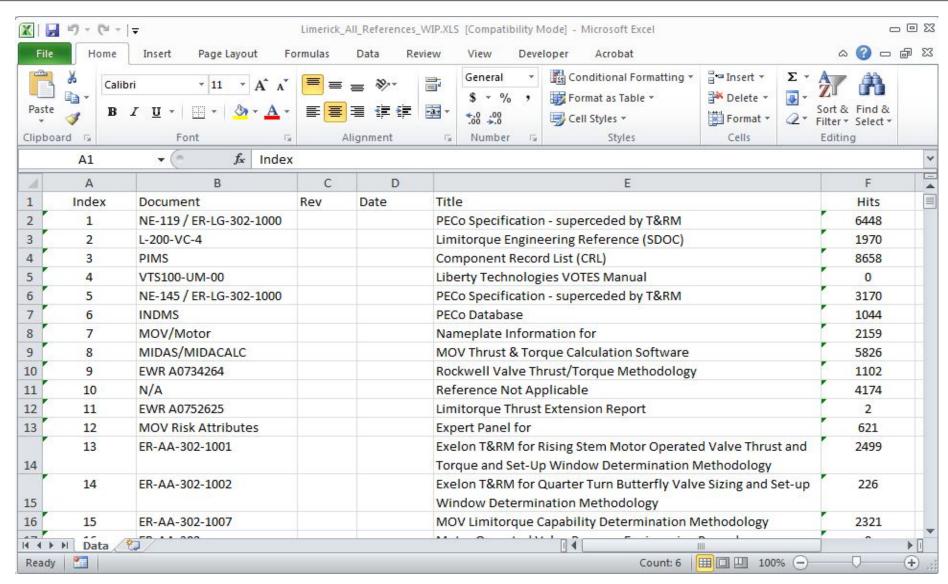
MIDAS Redirector – Reverse References WIP

ndex		s Print Exit Single Reference	Document #	Rev#	Date	Title	Hits	-1
1	_	All References	NE-119 /			PECo Specification - superceded by T&RM		
2	ALL	N/A	L-200-VC-4			Limitorque Engineering Reference (SDOC)		
3	ALL	N/A	PIMS			Component Record List (CRL)		
4	ALL	N/A	VTS100-UM-00			Liberty Technologies VOTES Manual		
5	ALL	N/A	NE-145 / ER-LG-302-1000			PECo Specification - superceded by T&RM		
6	ALL	N/A	INDMS			PECo Database		
7	ALL	N/A	MOV/Motor			Nameplate Information for		
8	ALL	N/A	MIDAS/MIDACALC			MOV Thrust & Torque Calculation Software		
9	ALL	N/A	EWR A0734264			Rockwell Valve Thrust/Torque Methodology		
10	ALL	N/A	N/A			Reference Not Applicable		
11	ALL	N/A	EWR A0752625			Limitorque Thrust Extension Report		
12	ALL	N/A	MOV Risk Attributes			Expert Panel for		
13	ALL	N/A	ER-AA-302-1001			Exelon T&RM for Rising Stem Motor Operated Valve Thrust and Torque and Set-Up Window Determination Methodology	2499	
14	ALL	N/A	ER-AA-302-1002			Exelon T&RM for Quarter Turn Butterfly Valve Sizing and Set-up Window Determination		

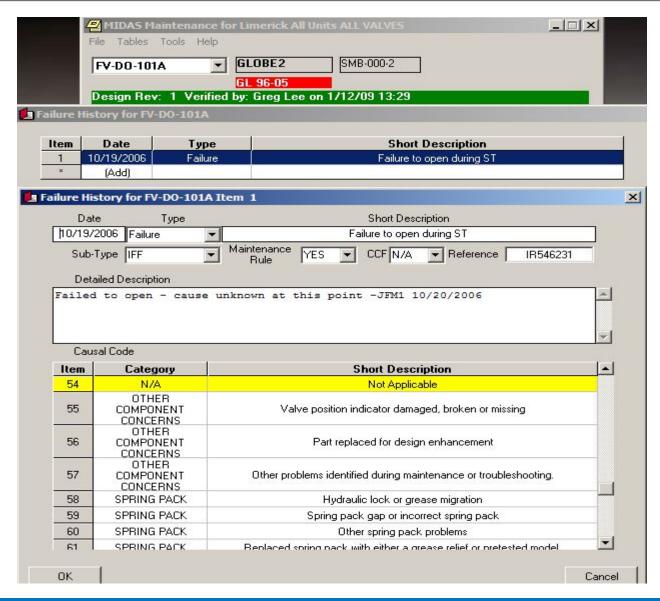
MIDAS Redirector – Reverse References WIP (Single)


MIDAS Redirector – Reverse References WIP (All)

ndex	Plant	Category	Document #	Rev#	Date	Title	Hits	
293	LGS	N/A	P119-129-2			Valve Motor Operator Capability Form	4	\neg
294	LGS	N/A	P119-133-2			Valve Motor Operator Capability Form	4	
295	LGS	N/A	P119-143-2			Valve Motor Operator Capability Form	6	
296	LGS	N/A	P119-166-1			Valve Motor Operator Capability Form	2	
297	LGS	N/A	P119-167-1			Valve Motor Operator Capability Form	2	
298	LGS	N/A	P-144-00123			Valve Motor Operator Capability Form	8	
299	LGS	N/A	P-144-00147			Valve Motor Operator Capability Form	2	
300	LGS	N/A	P-144-00148			Valve Motor Operator Capability Form	2	
301	LGS	N/A	P-144-00149			Valve Motor Operator Capability Form	3	- 1
302	LGS	N/A	P-144-00150			Valve Motor Operator Capability Form	3	
303	LGS	N/A	P-144-00151			Valve Motor Operator Capability Form		
304	LGS	N/A	P-144-00152			Valve Motor Operator Capability Form		
305	LGS	N/A	P-144-00153			Valve Motor Operator Capability Form		
306	LGS	N/A	P-144-00154			Valve Motor Operator Capability Form		
307	LGS	N/A	P-144-00155			Valve Motor Operator Capability Form		
308	LGS	N/A	P-144-00156			Valve Motor Operator Capability Form		
309	LGS	N/A	P-144-00157			Valve Motor Operator Capability Form		
310	LGS	N/A	P144-00063			Valve Motor Operator Capability Form		


MIDAS Redirector – Reverse References WIP (All)

MIDAS Redirector – Reverse References WIP (Export)


MIDAS Redirector – Manage Failure Codes

Item	Category	Short Description	Code	
1	ACTUATOR	Worn or broken gears	11	
2	ACTUATOR	Misalignment of handwheel declutch mechanism including damaged shaft or failure of tripper fingers	19	
3	ACTUATOR	Worn or broken bearings	22	
4	ACTUATOR	Improper actuator sizing	25	
5	ACTUATOR	Incorrect metallic material for gears, keys or bolts	27	
6	ACTUATOR	Incorrect reassembly or adjustment during maintenance or testing	31	
7	ACTUATOR	Motor pinion key replacement per IE Notice	40M	
8	ACTUATOR	Other actuator parts found worn or broken	40T	
9	ACTUATOR	Tripper finger T-bracket installed per Part 21 Notification	40V	
10	ACTUATOR	Clutch Lug Failure	N48	
11	ACTUATOR	Clutch Tripper Failure	N49	
12	ACTUATOR	HBC Gear Box Issue	N52	
13	DIAGNOSTIC TEST ISSUE	Cyclic Loading	N63	
14	DIAGNOSTIC TEST ISSUE	Excessive Running Load	N64	
15	DIAGNOSTIC TEST ISSUE	Abnormal Thrust/Torque Profile	N65	

MIDASTEST – Failure Code Process

Any Questions?

THANK YOU

